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SPLITTING PROPERTIES AND JUMP CLASSES 

BY 

WOLFGANG MAASS, RICHARD A. SHORE AND MICHAEL STOB t 

ABSTRACT 

We show that the promptly simple sets of Maass form a filter in the lattice ~ of 
recursively enumerable sets. The degrees of the promptly simple sets form a 
filter in the upper semilattice of r.e. degrees. This filter nontriviaUy splits the 
high degrees (a is high if a '  = 0"). The property of prompt simplicity is neither 
definable in ~ nor invariant under autom0rphisms of ~. However, prompt 
simplicity is easily shown to imply a property of r.e. sets which is definable in 
and which we have called the splitting property. The splitting property is used to 
answer many questions about automorphisms of ~. In particular, we construct 
low d-simple sets which are not automorphic, answering a question of Lerman 
and Soare. We produce classes invariant under automorphisms of ~' which 
nontrivially split the high degrees as well as all of the other classes of r.e. 
degrees defined in terms of the jump operator. This refutes a conjecture of 
Soare and answers a question of H. Friedman. 

w Introduction 

Let ~ denote the lattice of recursively enumerable sets and Aut(~)  the group 
of automorphisms of ~. What properties of r.e. sets A and B guarantee that 
there is a qbE Aut(~)  such that ~ ( A ) =  B? The first nontrivial result on this 
question was by Soare [8, theorem 2.3] who showed that if A and B are maximal 
r,e. sets (A is maximal if the equivalence class of A is a coatom in ~ * =  ~g 
modulo the ideal of finite sets), then there is a * E Aut(~g) such that qb(A) = B. 
Let ~ * ( A )  denote the principal filter generated by A in ~*. Then Soare's 

theorem can be rephrased to say that if each of ~ * ( A )  and LP*(B) is the 
two-element Boolean algebra, then A is automorphic to B. Clearly, if A is 
automorphic to B, ~ * ( A ) ~ L P * ( B ) ;  Soare's theorem left the hope that the 
converse is true. Also, since the r.e. degrees of maximal sets are precisely the 
high r.e. degrees (a is high if a '=  0"), Soare's theorem suggested connections 
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between properties of r.e. sets invariant under automorphisms and the classifica- 

tion of r.e. degrees in terms of the jump operator. Another connection is Soare's 

theorem that if A is low (A'--=TO') then ~ * ( A ) ~  ~g* [11, theorem 1.1]. 

Things are not so simple however. Lerman, Shore and Soare [4] gave 

examples of r.e. sets A and B such that ~ * ( A ) ~ * ( B )  and A is not 

automorphic to B; for Lf*(A) they used the countable atomless Boolean 

algebra. Lerman and Soare [3] introduced a class @ of r.e. sets invariant under 

automorphisms, the d-simple sets, such that the degrees of sets in @ included 

some but not all low degrees (a is low if a ' =  0'). This result precluded a 

classification of the degrees of all invariant properties in terms of the jump 

operator as was hoped for by Martin, Shoenfield [7], and others. 

The major accomplishment of this paper is to give examples of properties of 

r.e. sets which are invariant under Aut(~) but admit no classification in terms of 

the jump hierarchy of r.e. degrees or in terms of Lf*(A). Specifically, we produce 

invariant classes of degrees which nontrivially split each class in the jump 

hierarchy of r.e. degrees. In particular, we refute a conjecture of Soare [10, 

conjecture 4.3] which says that every invariant class of degrees contains all the 

high degrees. We also show that for most known lattices of the form ~*(A) ,  

~ * ( A ) - ~ * ( B )  cannot imply that A is automorphic to B. 

The outline of this paper is as follows. In w we study the promptly simple sets 

of Maass. The property of prompt simplicity is not invariant under automor- 

phisms but has been used to construct automorphisms. We show that the 

promptly simple sets form a filter in ~ and the degrees of these sets form a filter 

in the r.e. degrees. In addition, the promptly simple sets give the first example of 

a property of r.e. sets, invariant or not, which splits the high degrees. In w we 

introduce the splitting property, a property which is invariant under Aut(~). We 

show how prompt simplicity led us to discover the splitting property. We show 

that the sets with the splitting property form a filter in ~* properly contained in 

the d-simple sets of Lerman and Soare mentioned above. We conclude that 

there are low d-simple sets which are not automorphic, answering a question of 

Lerman and Soare. In w we show that 

{B : B has the splitting property but is not hyperhypersimple} 

is an invariant class of r.e. sets which nontrivially splits all the jump classes. We 

derive corollaries which show the ineffectiveness of degree or isomorphism type 

of Lf*(A) for predicting the automorphism type of fg. In w we conclude with 

some questions. 

We use the standard notation of Rogers [6]. Also A = *B denotes that the 
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symmetric difference of A and B is finite. All sets and degrees are r.e.; 

N = {0, 1, 2, . .-}.  We use dg(A) for the Turing degree of A and _-<~, = r  for the 

relations between sets of Turing reducibility and equivalence. The letters a, b , . .  �9 

denote degrees. Let H,  = {a :a  ~"~ = 0 ~'+1)} and L. = {a :a ~'~ = 0~'~}. If {U,},~N is a 

recursive sequence of r.e. sets, a simultaneous enumeration of { U , } , ~  is a 

recursive function g with range {(m, n) I m E U, }. (Here (x, y) is some effective 

pairing function mapping N x N one-one onto N.) If g is fixed, U,.s = 
{x : (3 t  =< s) [g(t) = (x, n)]}, (intuitively x is enumerated in U~ by the end of 

stage s). Define 

U.\Um ={X:(3S)[XE U,,~- U,,,~]} and U,~U, ,  = ( u . \ u , , ) n  U,.. 

An enumeration of a single r.e. set A, is a recursive sequence of finite sets 

{A,},~N such that A, C A,§ for all s. Thus we allow finitely many elements to be 

enumerated in A at stage s. We identify sets with their characteristic functions; 

A [x] is the restriction of A to arguments = x. qb~ (A) is the e th Turing reduction 

from oracle A. { W , } , ~  is the canonical listing of the r.e. sets. 

w Promptly simple sets 

An r.e. set A is promptly simple if it is simple and the witnesses to the 

simplicity of A are enumerated in A "promptly." 

DEvi~rrior~ 1.1. A coinfinite r.e. set A is promptly simple if there is a 

nondecreasing recursive function p and an enumeration {As },~N of A so that for 
every e E N 

(1.1) W, infinite ~ (3s)(3x)[x E (We, s -  W,,s-1)n A~,s,]. 

For example, the usual construction of a simple set produces a promptly 

simple set with p the identity function. (Although this definition of prompt 

simplicity is enumeration dependent,  Theorem 1.3(ii) gives an equivalent 

definition which shows that prompt simplicity is independent of the enumeration 

of A.) 

Maass introduced the promptly simple sets in [5] in connection with his work 

on a notion of genericity for r.e. sets. There he proved 

TrmOREM 1.2. (Maass, [5, theorem 17]). I[ A and B are promptly simple and 

,~ and B are semilow ({e : W, n ,A ~ 0}  ----T O' and similarly for B) then there is 
an automorphism c~ of ~g such that O(A ) = B. 

While Theorem 1.2 gives a large class, ~ = {A : A is promptly simple and 
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semilow} of r.e. sets which are automorphic, it seems unlikely that the class ~Se 

forms an orbit (i.e., A E ~Se and B automorphic to A implies B E ~ ) .  

Before establishing the properties of prompt simplicity mentioned in the 

introduction, we give some equivalent definitions of prompt simplicity which are 

especially useful in constructions. 

THEOREM 1.3. The following are equivalent: 

(i) A is promptly simple. 
(if) A is coinfinite and there is a recursive /unction f such that/or all e E N 

(1.2) Wtc,) C_ W~, 

(1.3) Wt<, ) n A = We n A, and 

(1.4) We infinite ~ We - W/ce ) # f~. 

(iii) The same as (if) but with (1.4) replaced by 

(1.5) W, infinite ~ We - -  W,](e) infinite. 

(If f is a/unction as in (iii), we say / witnesses that A is promptly simple.) 

PROOF. (i) f f  (if). Given an enumeration {A,},~N of A and a recursive 

function p which satisfy (1.1), let 

VCr,,) = {x : (3s ) [x  E W,,, - A,~,)]}. 

W~r is r.e. uniformly in e and Wire) certainly satisfies (1.2) and (1.3). By (1.1), if 

W, is infinite, We - Wi~e) # 0 .  
(if) ~ (iii). Let h be a recursive function so that Whr 

We - {0, 1,.-  -, x - 1}. If W, is infinite, so is Wh~,.x) for every x. Let / be as in (if). 

Let f' be defined by 

W~,(e)-~- { X~.X ~ n {Wf(h(e,y))) 1 �9 y<-x 

Certainly W/~h~,.y)) C_ W, so that W/,~,) C_ W,. Wrr n ,4 = we o A since if 

x ~ W, O ,4, x E Wh~,.y) n .4 for each y -< x. But W, - Wrc,) is infinite whenever 

We is infinite since Wh~,.y)- Wr~h~,.y)) is nonempty whenever W, is infinite; i.e. 

W, - W/,~,) has an element greater than y for any fixed y. 

(iii) ~ (i). Given an enumeration {A,},~N of A and a function [ as in (iii), we 

define p to satisfy (1.1). Let 

p(s )=( t t t ) (Vx) (Ve)[x  E W,., ~ x CA ,  U WI,,).,]; 
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p is recursive since for each s there are only finitely many pairs x, e such that 

x EWe,, and for each of these pairs there is a t > s so that x ~ A, U Wit,)., by 

(1.3). That p satisfies (1.1) is a direct consequence of (1.5) and the definition of p. 
[] 

Like most other classes of simple sets, the promptly simple sets form a filter in 

THEOREM 1.4. The promptly simple sets together with the cofinite sets form a 
filter in ~. 

Paoo~. If A _C A '  and f witnesses that A is promptly simple, f witnesses that 

A '  is promptly simple. 

Suppose that fA witnesses that A is promptly simple and fB witnesses that B 

is promptly simple. We show that A n B is promptly simple by a witness f which 

we construct below. 

Assume that we have a simultaneous enumeration of A, B, and { We }e~N. Let g 

be a recursive function so that for all e, W~e)= We n (A \ WiAte)). Define 

Wj(e) = (WrA,e)\A) U ( Wr%,,))\B ). 

Wrr C IV, since WrA~ ) C We and Wr,,~s~,)) C W~r C W,. Thus (1.2) is satisfied for 

f. For (1.3), suppose that x E We n (A n B). We need to show that x E Wrr ). If 

x-E A, then x E Wr~te ) and so x E Wrte ). If x ~ A n / 3  then either x E WIa~,)\A 

(and thus x E Wx~)) or else x ~ Wz~) so that x E Wi~gte)) and hence x E Wrr ). 
For (1.5), suppose that We is infinite. Then Ws~e)= We O (A\Wr~e)) is infinite 

since We - IVi~t~ ~ is infinite. But then W~r - Wr~gr is infinite. Each member of 

W~,~ - W~e) )  must be in W, - W~e). [] 

We next study the degrees of promptly simple sets. Our main conclusions are 

that this class of degrees is a filter in the upper semilattice of r.e. degrees and that 

this filter splits every jump class (H, or L , )  nontrivially. (F  is a filter in an upper 

semilattice if (i) a ~ F and a _-< b implies b ~ F and (ii) a, b ~ F and a n b exists 

implies a n b ~ F.) 

THEOREM 1.5. Let A and B be promptly simple sets. Then there is a promptly 

simple set C <~ A, B, C' =-7- CY. 

COROLLARY 1.6. The degrees of promptly simple sets, ~, form a filter in the 
upper semilauiee of r.e. degrees. 

PROOf: Or COROLLARY 1.6. We first show that if a C �9 and b _-> a then b ~ ~. 

Let A be a promptly simple set, d g ( A ) =  a. Let C < ~ A  be promptly simple so 
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that if e = dg(C), e' =0 ' .  By a theorem of Lachlan [2, theorem 1], C has 

supersets of every degree b -> e and so of every degree b > a. But each such 

superset is promptly simple by Theorem 1.4. 
Suppose that a, b • �9 and d = a n b exists. Then (=le) [e E �9 & e =< a, b]. 

But then e < d so that d E ~. [] 

PROOF OF THEOREM 1.5. We assume that A O B is coinfinite. We explain 

how to omit this assumption at the end of the proof. By Theorem 1.4, A n B is 

promptly simple, say by witness f. To construct C promptly simple, it suffices to 

make C coinfinite and meet the following requirement for each e E N: 

Pe : We infnite ~ (3x)(3s)  [x E (W~.,+I - W~,s) n Cs+~]. 

(Then C is promptly simple by (1.1) with p( s )=  s.) 

To make C of low r.e. degree it suffices [9, theorem 4.1] to meet the following 

requirement for every e E N: 

Ne : If ~e., (C~; e ) is defined for infinitely many s then (I)e ( C  ; e ) is defined. 

Let r(e,s) be the length of the initial segment of C~ being used in the 

computation dp,.,(Cs; e) if it is defined and 0 otherwise. During the construction, 

to aid in making C ----<TA, B we will enumerate certain r.e. sets U~ uniformly in e. 

By the recursion theorem, we may suppose we know the index of a recursive 

function g so that U, = Wgt~ for all e E N. 

Stage s + 1. Find the least e such that Pe is not satisfied and 

(3x)  [x E W~.~+1 - W,.,, x > 3e, and (Vi < e) [x > r(i, s)]]. 

(The clause x > 3e is used to make C coinfinite and also to remove the 

assumption A U B coinfinite.) For the greatest such x enumerate into U, = 

Wg~,) all of {y : y --< x and y E A,  U B,}. Now find the least t > s such that 

(i) W I ( ~ ( , ) )  ,, = U , . , + , ,  or 

(ii) (3y =< x)[y  E (A, N/3,) - (A, U B~)]. 

In this latter case, enumerate x in C,+~. Otherwise proceed to stage s + 2. In 

either case say that P, receives attention at stage s + 1. (To see that either (i) or 

(ii) must happen note that whenever y E U,.~+, - U,.,, y E (A, U B,) O Ws(,). 

Thus either y must later be enumerated in W1(g(,)) or into A n B;  these two cases 

are reflected in (i) and (ii) respectively.) 

LEMMa 1.7. C----<rA, C=<rB. 

PROOF. If A[x]  =A,[x]  then C[x] = C,[x] because if x ~ C~+~-C,, then 

(=ly <_-x) (3 t ->s )  [y ~ A , + ~ - A , ] .  Similarly for B. 
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LEMMA 1.8. Each requirement P, receives attention only finitely often. 

PROOf. If P, receives attention infinitely often, U, = W~(,) is infinite. Thus 

(:ly)[y ~ U~-  WI(,(,))]. If y was enumerated in Ue at stage s + 1 then P, 

received attention at stage s + 1 and case (i) could not happen because of y. Thus 

(ii) happens, and so P, is satisfied at stage s + 1 and never again receives 

attention. 

LEMMA 1.9. Each requirement N~ is satisfied. 

PROOf. This is the usual finite injury argument; the clause (Vi _->e) 

[x > r(i, s)] guarantees that if So is a stage such that no requirement P~, i < e 

receives attention after So then ~ e ( A ;  e) is defined itI @e.,(As ;e )  is defined for 

some s _~ So. 

LEMMA 1.10. Each requirement P, is satisfied. 

PROOF. If W, is infinite, there are infinitely many x and stages s such that 

s => last stage at which all P~, i < e receive attention and x E W,.,+I - W,.s, x => 3e, 

and x >= limsr(i,s) for each i =< e (which all exist by 1.9). Thus P, will receive 

attention enough times until it is met by Lemma 1.8. 

Note that the clause x => 3e guarantees that C is coinfinite, Lemma 1.9 that C 

is low, and Lemma 1.10 that C is promptly simple. To remove the assumption 

that A t,J B is coinfinite, first apply the proof using A for both A and B to get 

,3, _--<TA such that A is low, promptly simple, and IA[3e]l _-<e. Similarly, get 

/3 _-<rB, low, promptly simple, and I B[3e]l_- < e. Now apply the proof using ,3, 

and/} for A and B, ,3, U/3 is coinfinite. [] 

Theorem 1.5 implies that no pair of promptly simple sets form a minimal pair 

(A, B are a minimal pair if dg(A) and dg(B) have infimum 0 in the r.e. degrees). 

In fact, no promptly simple set is half of a minimal pair. 

THEOREM 1.11. IrA is promptly simple then A is not half of a minimal pair. 

PROOF. The proof is much like that of Theorem 1.5 so we just give a sketch. 

Given a nonrecursive set B, we must find an r.e. set C so that C _---rA, C -<-rB, 

and C is nonrecursive. We have the usual simplicity requirements to make C 

nonrecursive: 

P, : W, infinite ~ C fq We # 0 .  

Again, to meet P, whle insuring that C ~ r A  we will enumerate certain r.e. sets 

U, and assume by the recursion theorem that U, = Wgt,) for some fixed 

recursive function g. To insure that C =<TB we will require that if B[x] = B,[x] 
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then C[x] = Cs[x]. Assume that for each s, Bs+~- Bs has exactly one element;  

denote  this element by b~.~. Let A be promptly simple with witness f. 

CONSTRUCTION. Stage s + 1. Find the least e such that 

We,~§ n Cs = Q  and 

(3x)  [x E W..s.,, x _>- 2e, and x > b~+l]. 

For the greatest such x enumerate  into Ue = W~ce~ all of {y : y =< x and y E As}. 

Find the [east t-> s such that 

(i) Wf(g(e) ) , ,  = Ue.s+ 1 o r  

(ii) (:ly < x) [y E A, - As]. 

In the latter case, enumerate  x into C~+~. 

Virtually the same argument as Lemma 1.8 establishes that requirement Pe 

receives attention only finitely often. Each requirement P, is satisfied since if We 

is infinite there are infinitely many stages s so that 

(:Ix) Ix E We.~+,, x > 2e, and x > b~+,], 

else B is recursive. [ ]  

COROLLARY 1.12. ~ splits H~ nontrivially. 

PROOF. ~ n H~ / Q by Corollary 1.6. Lachlan has shown [1, theorem 2] that 

there are high r.e. degrees a, b such that a n b = 0. At least one of a, b is not in 

so �9 ~H,. [] 

COROLLARY 1.13. There are maximal sets A and B such that A is promptly 
simple but B is not. Thus, since A is automorphic to B, prompt simplicity is not 

invariant under automorphisms o[ ~. 

PROOF. For A take a maximal superset of a low promptly simple set. (Every 

low r.e. set has a maximal superset.) For B take any maximal set in some high 

degree h ~ ~. Every high degree contains a maximal set. [ ]  

w The splitting property 

Although prompt simplicity is not definable in the lattice ~*, it led us to the 

discovery of the following property which is. 

DEFINITION 2.1. A has the splitting property if for every r.e. set B there are 

r.e. sets B0 and B~ so that 

(2.1) B0 U B~ = B, 
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(2.2) Bo n B, = O, 

(2.3) Bo C_ A, 

(2.4) If W is r.e. but W -  B is not r.e. then W - Bo and W - B~ are not r.e. 

We say B0 and B, are a splitting of B over A if (2.1)-(2.4) hold. 

Friedberg showed that N has the splitting property; a splitting of B over N is 

called a Friedberg splitting of B. 

THEOREM 2.2. If  A is promptly simple then A has the splitting property. 

PROOF. Let A be promptly simple with witness f. Given B r.e., we show how 

to enumerate  Bo and B~ to split B over A. We have the following requirements 

for each pair (e, i), e E N, i = 0, 1: 

P<e.,>: B , #  VCe. 

The method of meeting these requirements will guarantee 2.4. P<,.~> is satisfied at 

stage s if B,,, n We.s# 0 .  
Let g be a recursive function such that Wg~,~ = We ~ B .  

Stage s + 1. We assume [ B,+I - / 3 ,  ] = 1. Let x E B,+~ - B,. Let (e, i) be the least 

pair such that P<,.,> is not satisfied at stage s and x E We.s. If i = 1 or (e, i) does 

not exist, enumerate  x in B,,s+,. Otherwise, (i = 0), let t => s be a stage such that 

x E A, U W1~g~e>~,,. Such a stage exists since x E Wg~). Then enumerate  x E B0.,., 

if x E A,, otherwise enumerate x E B,.s+,. We say (e, i) receives attention at stage 

s + l .  

Note that the construction guarantees (2.1), (2.2) and (2.3). 

LEMMA 2.3. For each pair (e, i), P<e.~> receives attention at only finitely many 
stages. 

PRooF. By induction suppose that P<,,~,> never receives attention after stage 

So if (e', i') < (e, i). 

If i = 1 the lemma is obvious since if P<~,~> receives attention at stage s + 1, P<e.~> 

is satisfied at all stages t > s + 1. Suppose then that i = 0 and P<,.~> receives 

attention infinitely often. 

If (e,O) receives attention at stage s +1  then (3x)  [x ~ W,.~ A(B,+~-B~)].  

Any such x is in Ws~) so that Ws~,) is infinite. But then suppose that s + 1 _-> So is 

any stage so that (= lx ) [x~  W~.~ N(B,+~-B~)] but x~.  Wt~r Then (e,0) 

receives attention at stage s + 1 and is satisfied at stage s + 1. This is a 

contradiction since (e, 0) will never again receive attention. 
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LEMMA 2.4. If  We N B  is infinite then We nB,#Q. 

PROOF. The proof of the last lemma really showed that if We N B  is infinite, 

P~e.~ receives attention enough times so that it is satisfied. 

LEMMA 2.5. If W is r.e. and W -  B is not r.e. then W -  Bi is not r.e. for 
i =0 ,1 .  

PROOf. If W - B ~  = W~, then IV, N B  is finite by Lemma 2.4. But then 

W - B = * We \ B so that W - B is r.e. for a contradiction. [] 

Notice that indices for the sets Bo and Bt in the above proof can be produced 

uniformly from the index of B. In fact this stronger uniform splitting property is 

easily seen to be equivalent to prompt simplicity. 

Like the promptly simple sets, the sets with the splitting property form a filter 
in ~. 

THEOaEM 2.6. 5G = {A : A has the splitting property} is a filter in K 

PRoof. SG is closed upwards for if A _C A '  and Bo and B I split B over A, Bo 
and B, split B over A'.  

Suppose that A and C have the splitting property and B is an r.e. set. We 

show that B splits over A N C. Let Bo and B1 split B over A and Boo and Bo, 

split Bo over C. We claim that Boo and B0, tO B1 split B over A N C. Certainly 

Boo U (B0, U B,) = B and Boo N (Bo, O B,) = Q. Boo C_ A N C since B0 _C A and 

Boo C_ C, Bo. Suppose that W -  B is not r.e. Then W -  Bo is not r.e. so that 

W -  Boo is not r.e. Now W -  (Bo~ U B~) is not r.e., since otherwise W -  B1 = 

(W - (B,,, U B,)) U (B,, n W) would be r.e. [] 

We next show how the splitting property is related to other properties of 

simplicity. (Note that if A E 9~ and A is coinfinite then A is indeed simple.) In 

particular we show that all such r.e. sets A are d-simple. The d-simple sets were 

introduced by Lerman and Soare [3] and gave the first example of a lattice 

definable class of sets whose r.e. degrees nontrivially split a jump class. (There 

are low d-simple sets, but there are low r.e. degrees which contain no d-simple 

set.) In w we will show that {A : A is not hyperhypersimple and A ~ 5e~,} is a 

class of r.e. sets whose degrees nontrivially split every jump class of r.e. degrees. 

THEOREM 2.7. (i) I[ A is hyperhypersimple then A has the splitting property. 

(ii) I f  A has the splitting property and is coinfinite then A is d-simple. 

PRool~. (i) Suppose to the contrary that A does not have the splitting 

property and B is a set which does not split over A. Let B0 arid B~ be a Friedberg 

splitting of B ; then B0 n A and B, n fi, must be nonempty else Bo and B~ split B 
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over A. Let Boo and Bo, be a Friedberg splitting of Bo. Boo n fit (Bol n fit) is 

nonempty else Boo and Bol U Bt (Bo~ and Boo O BI) are a splitting of B over A as 
in the proof of Theorem 2.6. Continue to get sets Bt, Bo~, Boo~,'" which are 

disjoint r.e. sets each intersecting A. This is a weak array witnessing that A is not 

hyperhypersimple. 

(ii) A is d-simple if 

0/X)  (3 Y) (VZ) [X n fit = Y n fit, Y C_ X, 
(2.5) 

and Z - X infinite ~ (Z - Y) n A infinite]. 

Suppose that A has the splitting property. Given X, let/30 and BI split X over 

A. Then Y = B~ is the desired Y in the definition of d-simple. Certainly Y _C X 

and Y O fit = X O fit. Suppose that Z - X is infinite. If Z - X is r.e., (Z - X) n 

A is nonempty by the simplicity of A. If Z - X is not r.e. then Z - B0 is not r.e. 

so in particular Z O Bo is infinite. But Z O B0 C_ (Z - Y) O A. [] 

The next theorem answers a question of Lerman and Soare. They asked 

whether any two low d-simple sets are automorphic. 

THEOm~M 2.8. There are d-simple sets A and C of low r.e. degree such that A 
has the splitting property but C does not. 

PROOF. For A take any low promptly simple set (see Theorem 1.5). Lerman 

and Soare [3, theorem 3.1] have constructed r.e. sets C and D such that C and D 

are d-simple but C O D is not d-simple. Their construction can easily be 
combined with requirements to make C and D low. But C and D cannot both 
have the splitting property else C O D does and so is d-simple. 

It is also possible to construct C directly using a technique for constructing 

sets without the splitting property that imposes negative restraint similar to that 
of the construction of a minimal pair. [] 

It is still an open problem to give invariants which characterize the orbit of 

some low r.e. set. Theorem 2.8 says that d-simplicity (and in fact uniform 

d-simplicity as can be seen from the proof) is not enough; it also suggests the 
problem may be very hard. 

w Degrees of sets with the splitting property 

THEOREM 3.1. Suppose that A has the splitting property, A is coinfinite, and A 
is not hyperhypersimple. Then A is not half of a minimal pair. 

PROOI:. We first need a lemma, the proof of which is essentially an idea of 
Lachlan [2, theorem 1]. 
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LEMMa 3.2. l f  A is not hyperhypersimple, and C is any r.e. set, there is an r.e. 

set B such that 

(i) A N B _ - < r A ,  
(ii) B_-<TC, 

(iii) if B is recursive, C <=rA. 

PROOF. Let f be a function witnessing the nonhyperhypersimplicity of A ;  

i.e., 

( r e )  [ Wr<e) f'l A ~ Q)], 

( r e )  [ Wtt,) is finite], 

O/e)O/i )[e~ i ~ Wtt,) N Wit,) = 0].  

Also we will assume that Wtt,) has no member -< e. Define B from a 

simultaneous enumeration of A, C, and {W,},~N as follows: 

B = {x : (:ie) (3s)  [x E (Wtr A , )  and e E (C,+1 - C,)]}. 

B is in ~z form and so is r.e. (Informally, enumerate x in B if e appears in C 

while x E Wtr A.) 

(i) A r B -<TA as follows: If x E A find s so that x E A,. Then 

x E B ~ (3e < x) (3 t < s) [x • (Wt(e~.,- A,)  and e ~ (C+, - C)].  

This last condition can be checked recursively. (Note that if x E Wt~,) then 

e <x . )  
(ii) B ~ z C  since if s is a stage that C,[x] = C[x], x E B iff (3e < x) (3t < s) 

[x ~-(Wtt , ) , , -A , )  and e E (C+1-  C)].  
(iii) Suppose that B is recursivr To see if e E C, find an element x E A such 

that x E Wrt,) (WI t , )N,4~O) .  Find an s such that x E Wtt,~,,. Then e E C iff 

e E C, or x E B .  Thus C < T A .  

LEMMA 3.3. I f  C is r.e., nonrecursive, then C and A do not form a minimal 

pair. 

PgOOF. We may suppose that C ;~rA. Let Bo, B1 split B over A where B is 

the set constructed above. B is nonrecursive by Lemma 3.2 (iii). Then Bo and BI 

are nonrecursive. (Take W in (2.4) to be N.) We claim that Bo_-<rA, C. 

Bo<-TC since B -<rC and Bo<-rB. (To see if x ~Bo,  see if x E B .  If x ~ B  

wait until x E B0 or in B,.) 
B o < r A .  We show how to decide if x E Bo. First see if x E B N A .  
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(B Iq A =<TA by Lemma 3.2(i).) If x ~ B fq A, then x ~ Bo. If x E B fq A, wait 

until x ~ B0 or in B~ and answer appropriately. [] 

Notice that we did not use all of the splitting property in Theorem 3.1. 

DEFINITION 3.4. An r.e. set A has the weak splitting property if for every r.e. 

B there are sets B0, B~ such that 

Bo U B~ = B, 

BoA B~ = f~, 

BoC_ A, 

B nonrecursive ~ B0, B~ are nonrecursive. 

Of course the weak splitting property is on its face weaker than the splitting 

property; we have only replaced (2.4) by a weaker condition. 

COROLLARY 3.5. Suppose that A has the weak splitting property, A is coinfi- 

nite, and A is not hyperhypersimple. Then A is not half of a minimal pair. 

We now derive some corollaries and discuss the significance of this result. If c~ 

is any class of r.e. sets, let c g = { a : ( 3 A )  [ d g ( A ) = a  and A Eqg]}. Let 

cd~ ={A : - - ( 3 B  _DA) [B ~ cr Let ~ = { A  :A is hyperhypersimple}. Let 

Se~ = {A : A has the splitting property}. 

COROLLARY 3.6.(i) ff~ D_ H~ but SP~ nontrivially splits H,+I and L,  for every 
n > l .  

(ii) S~ - ~ nontrivially splits I1, and L,  for every n >= 1. 
(iii) Sf~, n ~ is a filter in ~ ; SP~ fl ~ #  splits H,. 

PROOF. There is a high r.e. degree a such that a is half of a minimal pair 

[1, theorem 2]. Thus 

dg(B) =< a ~ [B E 5e~, r B E ~] .  

(i) H,§ ~ 5r : Choose b < a, b E H.§  b ~ , ~  since b ~ ~ ( ~  = H~). (Simi- 

larly L . ~  Sr 

L, tq ~ '~# O, H.§ n ,~'~# O: Let c be low such that c contains a promptly 

simple set. Then choose b >= c, b E H,§ b E Sr since b contains a promptly 

simple set by Theorem 1.6. 

H~ C_ ~ : as SP~ _D ~ = H~. 

(ii) Since ~ = H~, ~ -  ~ and Sr coincide on Hr. Thus we need only show 
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that Sr - ~ splits H,. Note that a ~ ,9'~ - ~. To find b E ~ - ~, b E H1, we 

choose a promptly simple set B such that ~*(B) is infinite but no element of 

~*(B)  other than 0 or 1 is complemented. (Such a set is called r-maximal and 

satisfies dg(B) E H1.) 

Note that the standard constructions of r-maximal sets are easily combined 

with requirements to make the sets promptly simple. One can also see that there 

is such a promptly simple set B as follows: if A is r.e. there is a promptly simple 

set B such that ~ * ( B ) ~ * ( A ) .  This follows from the fact that there is a 

promptly simple set/~ such that ~*(/~)-~ ** (any low r.e. promptly simple set 

will do) and any superset of B is promptly simple. 

(iii) We need only check that (Sr O ~ '# )n  HI ~;~. However, the set B 

constructed in (ii) above is in ~ n ~#.  6e~ n ~'~ is obviously a filter in ~. [] 

Call qg invariant if ~ is a class of r.e. sets invariant under Aut(~). Soare 

conjectured [9, conjecture 4.3] that every invariant class contains H~. Corollary 

3.6 (iii) shows this false, even if we restrict it to definable filters in ~. Corollary 

3.6(ii) gives an example of an invariant class which splits each/-/, and Ln ; such 

classes had previously been found only for L1. 

If B is r.e. there is an A E ~ such that Lf*(B)= 5f*(A). This follows from 

the fact that there is a C E b~ such that Af*(C) ~ ~* and supersets of C are in 
~e.. 

Thus if dg(B)_-< a, a as in the proof of Corollary 3.6, ~ * ( B ) ~  ~*(A)  cannot 

imply B automorphic to A unless B is hyperhypersimple. However for most 

known lattices of the form ~g*(B), (3A) [dg(A) = a and Lf*(A) -~ .~*(B)]. Thus 

it seems unlikely that Af*(A)~ ~*(B) implies A automorphic to B in any case 

where A is not hyperhypersimple. Corollary 3.6 also implies that no set in 

5e~, - ~ can be taken by an automorphism to any set recursive in a. This is the 

first example of a high degree which omits some nontrivial automorphism type 

and gives an answer to problem number 60 of H. Friedman [0]. 

w Open questions 

What invariant properties of low r.e. sets A and B guarantee that A and B 

are automorphic? It seems unlikely that the splitting property is enough 

although this is still open. 

Are there any lattices ~ other than finite lattices such that ~ -  ~*(A)--- 

Lf*(B) implies A automorphic to B? We doubt it; by our remarks at the end of 

the last section, the only reasonable candidates are Boolean algebras. Even 

there, Lerman, Shore and Soare have ruled out the countable atomless Boolean 

algebra. 
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A r e  any  classes H ,  or/7,n invar ian t  o t h e r  than  H~, /7,, and /~2?  

A r e  the re  any  invar ian t  classes which a re  def inab le  in the  l anguage  of  r .e.  

deg rees ;  0, < ,  U ,  1? In par t i cu la r ,  if a is not  half  of a min ima l  pa i r  is the re  a B, 

d g ( B )  = a such that  B is no t  h y p e r h y p e r s i m p l e  bu t  has  the  weak  spl i t t ing 

p r o p e r t y ?  

A d d e d  in proof. Shore  has recen t ly  shown that  the  deg rees  which are  not  

halves  of min ima l  pai rs  a re  prec ise ly  the  deg rees  of p r o m p t l y  s imple  sets and  so 

has  a n s w e r e d  this ques t ion .  
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